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Several multigrid schemes are considered for the numerical com-
putation of viscous hypersonic flows. For each scheme, the basic
solution algorithm employs upwind spatial discretization with ex-
plicit multistage time stepping. Two-level versions of the various
multigrid algorithms are applied to the two-dimensional advection
equation, and Fourier analysis is used to determine their damping
properties. The capabilities of the multigrid methods are assessed
by solving three different hypersonic flow problems. Some new
multigrid schemes based on semicoarsening strategies are shown
to be quite effective in religving the stiffness caused by the high-
aspect-ratio cells required to rescive high Reynolds number flows.
These schemes exhibit good convergence rates for Reynolds num-
bers up to 200 x 10° and Mach numbers up to 25. © 1985 Academic
Press, Inc,

1. INTRODUCTION

Over the past few years the need for efficient numerical
metheds to soive the equations govemning hypersonic viscous
flows has become very obvious. Mostly, flow solvers used in
current acrospace programs, such as X-30 or SAENGER, ex-
hibit slow convergence towards the desired steady-state solu-
tions, which leads to high computer costs, long turmn-around
times, and a slowdown in the efforts to design these vehicles.
The reason for this is the appearance of flow phenomena with
very different scales and with highly nonlinear behavior. We
mention here the laminar and turbulent boundary layers at very
high Reynolds numbers and their interactions with shocks and
slip lines and, furthermore, shock/shock interactions which
generate complex flow fields. Many numerical techniques
which were developed to assist convergence of subsonic or
transonic flow calculations are found to be inappropriate for
hypersenic flow applications. For example, the time step of
many explicit and implicit schemes, which allows the transient
behavior of strongly nonlinear hypersonic flow phenomena to
be captured, is highly limited. Consequently, thousands of time
steps are needed to converge the thin boundary layers,
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A particular method which was saccessfully developed to
accelerate convergence for a broad range of flow problems at
both subsonic and transonic speeds is the multigrid approach.
This method, which uses a sequence of successively coarser
meshes in order to propagate disturbances throughout the flow
field, combines nicely with explicit multistage time-stepping
schemes [1). Good convergence rates were obtained for inviscid
flow and, later on, for viscous flows also [2-4]. Initial attempts
to apply this promising method to hypersonic flows failed for
several reasons. Primarily, the shock capturing capabilities of
the central-difference scheme vsed in [1-4) were found insuffi-
cient to resolve strong shocks. Subsequently, the shock detec-
tion mechanism built into the central-difference scheme was
mproved in [5, 6). In order to have strong shocks and slip
lines resolved with fewer computational points, the central-
difference scheme was replaced with an upwind-type scheme in
[7-9]. Since the high-frequency damping properties of upwind
schemes are generally less controllable compared with central-
difference schemes, a variant of the standard multigrid approach
was also used in {8, 9]. With this variant, additional coarse
meshes are generated by semicoarsening in the different coordi-
nate directions. This strategy was felt necessary to alleviate
convergence problems associated with the high-aspect-ratio
cells of the computational mesh. An additional problem encoun-
tered is that very high temperatures can occur in the stagnation
region and near the surface at high Mach numbers; hence, the
time step of explicit schemes may be severely restricted by the
viscous stability limit. It was found [6, 8, 9] that the viscous
time-step limit can be removed by implicit residual averaging.

It is worthwhile to note additional published work on
multigrid schemes for hypersonic flows. Decker and Turkel [10]
analyzed the effect of boundary conditions and Runge—Kutta
coefficients on multigrid convergence for hypersonic inviscid
flows. Leclercq and Stouffiet [11] analyzed two-ievel multigrid
cycles with multistage schemes and upwind differencing in one
dimension, and they presented two-dimensional computations
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FIG. 1. Two-level multigrid schemes investigated in the present work: (a) full coarsening; (b) semicoarsening with simple averaging; (c) sequential

semicoarsening; {d} semicoarsening with selective averaging.

of hypersonic flows on unstructured meshes. As a means to
remove stiffness associated with high-aspect-ratio cells, Blazek
et al. [12] introduced an upwind-biased form of the residual
smoothing by which higher Courant numbets could be obtained.
Thomas [13] used multigrid in combination with third-order
upwind differencing and implicit approximate factorization
schemes. Koren and Hemker [14] solved the steady Euler equa-
tions with multigrid and point relaxation applied as the
smoother. Using damped restriction and upwind prolongation,
they reported impressive convergence rates for high-speed
flows arcund blunt bodies.

The present paper decribes recent efforts to understand and
to improve the use of multigrid schemes for the computation
of hypersonic flows. First, various two-level multigrid schemes
with and without semicoarsening are introduced. Then we use
Fourier analysis of the schemes, when applied to the two-
dimensional convection equation, in order to study the behavior
of their components. For each multigrid approach, the solver
uses upwind discretization combined with an explicit multistage
scheme. We next consider the numerical solution of the Navier—
Stokes equations for hypersonic flows. In Section 5, the basic
elements of the flow solver for these equations are described.
Some details concerning the application of the time-stepping
scheme to fine and coarse grid problems are presented in the
first part of Section 6. The extension of the two-level schemes
to multilevel ones is then discussed. Elements of multigrid that
are of particular importarce for high-speed flow computations
are given. In the results section, we cousider three different
hypersonic flow problems to assess the capabilities of the
multigrid schemnes. The effect of stiffness, arising from coordi-
nate grids with high-aspect-ratio cells and from flow alignment,
on the performance of the multigrid methods is examined. The
benefits of semicoarsening are clearly demonstrated. Moreover,

with the semicoarsening strategies being considered, good con-
vergence rates are obtained for Reynolds numbers up to 200
% 10 and Mach numbers up to 25.

2. MULTIGRID STRATEGIES

To set the stage for the discussion relating to multigrid in
subsequent sections of this paper, we first briefly describe the
multigrid method and different execution strategies that will
be considered. The multigrid approach is based on the fufl
approximation scheme of Brandt [15]. The grid transfer opera-
tors are those considered by Jameson [1]. Coarser meshes are
obtained by eliminating alternate mesh points in each coordinate
direction. Both the solution and the residuals are restricted from
fine to coarse meshes. A forcing function is constructed so that
the solution on a coarse mesh is driven by the residuals collected
on the next finer mesh. The corrections obtained on the coarse
mesh are interpolated back to the fine mesh. The multigrid
schemes investigated within the present work are displayed in
Fig. 1. Figure 1a shows a two-level scheme with full coarsening,
Restriction of the solution from the fine mesh, (m,n), to the
coarse mesh, (m/2, n/2), is done by injection, whereas full
weighting is used for the restriction of the residuals. Prolonga-
tion of the corrections is done by bilinear interpolation. Figure
1b shows a scheme with semicoarsening in the different coordi-
nate directions. Again, injection and full weighting are used in
the restriction process. The corrections cbtained on the coarse
meshes are averaged before adding them to the fine mesh solu-
tion, This is indicated by the numbers at the “‘up’’ arrows. Due
to this averaging, half of the individual corrections on the coarse
meshes is lost. It is, therefore, anticipated that the scheme in
Fig. 1a should be computationally more efficient, provided there
is enough high-frequency damping obtained with the smoothing
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scheme of the fine mesh. In order to overcome this deficiency
of the semicoarsening scheme, two more variants are consid-
ered. For the scheme of Fig. lc, the solutions on the coarse
meshes are computed sequentially. Hence, the corrections ob-
tained on the (m/2, n) mesh can be used to update the solution
on the (m, n/2) mesh before time stepping (as indicated by the
horizontal arrow). The sequential update of the second coarse-
mesh solution allows the full amount of corrections to be passed
up to the fine mesh. Note that this multigrid variant is not
compatible with the idea of parallel computations. An interest-
ing compromise between the schemes of Figs. 1b and Ic is
presented in Fig. 1d. This scheme was suggested by John Van
Rosendale, and it is based on his work in [16]. Here, only the
" corrections common to both of the coarse meshes, (m/2, n) and
(m, n/2), are averaged, whereas the corrections to the modes
living either on (m/2, n) or on (m, n/2) are passed to the fine
mesh in full. This scheme does allow parallel computations for
the coarse meshes.

Before proceeding some remarks concerning the relationship
between the sequential semicoarsening scheme considered here
and the semicoarsening scheme introduced by Mulder [17] are
appropriate. According to a standard two-level Fourier analysis,
where the two coarse-grid problems are solved exactly, these
schemes are essentially equivalent. There is a minor difference
due to the coarse-grid update in the sequential semicoarsening.
These schemes can exhibit larger differences in practice due
to the application of an approximate (iterative) solver on the
coarse grids, the use of more than two levels, and the solution
of nonlinear equations. Nevertheless, if these two schemes are
used in the same multigrid method (i.e., the same iterative
solver and intergrid transfer operators), one would expect them
to have a similar convergence behavior.

3. FOURIER ANALYSIS OF THE SCALAR
ADVECTION EQUATION

A crucial factor in constructing an effective multigrid
method is the selection of a smoothing or driving scheme.
Loocal mode (Fourier) analysis is generally applied to evaluate
possible smoothers on the basis of stability and high-frequency
damping properties. The screening of schemes is often per-
formed with a single-grid analysis. Since a stable single-grid
scheme may not be stable for the multigrid process, the
behavior of a smoother with a particular multigrid strategy
is needed. In addition, the multigrid process can have a
substantial impact on the performance of the multigrid method.
In fact, as we will demonstrate in this paper, semicoarsening
can provide significant improvement, relative to full coarsen-
ing, in the damping of the multigrid, especially when there
is a strong mesh anisotropy due to high-aspect-ratio cells.

A two-gnd or two-level multigrid analysis has been applied
by Jameson [1], Mulder [17], and Leclercq and Stoufflet [11]
using various schemes (i.e., multistage time stepping, different
types of relaxation) for solving the Euler and Navier—Stokes
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equations of fluid dynamics. In [1] Jameson introduces a multi-
level uniform analysis and considers the linear advection equa-
tion in one space dimension. This approach represents a depar-
ture from the standard two-grid analysis given by Stiiben and
Trottenberg [18), which forms the basis for the analysis used
in [17, 11]. With the multilevel uniform analysis, fine-grid and
coarse-grid corrections are computed at all points of the fine
grid. Then a nonlinear filter is applied to remove the coarse-
grid corrections at fine-grid points not contained in the coarse
grid. The filtering produces additional errors in the form of a
carrier wave with a frequency depending on the fine-mesh
spacing. This analysis does not allow for the coupling (aliasing)
effects due to the restriction operator (fine to coarse grid transfer
operator) in the multigrid method. However, it does offer the
advantages of simplicity and application to more than two-level
schemes. Thus, it allows the rapid comparison of multigrid
algorithms. If a multigrid method is unstable or inefficient
according to this analysis, then it is probably not a reason-
able scheme.

In this section, we consider the scalar two-dimensional advec-
tion equation. The multilevel uniform analysis of [1] is extended
to two space dimensions and applied to full coarsening and
semicoarsening strategies.

Consider an initial value problem governed by the scalar
advection equation

%w(x, ¥ 04+ Ewlny, =0, (x,y)ei, (3.D

where the linear operator is

fz‘fiai-kbi

., a>0,b>0,
ox ay 4

the domain Q) C $R?, and ¢ € R*. Assume a periodic boundary
condition for the scalar function wix, y, £). Let & = {(x, y):
0=x=1,0=y= 1} Define a fine grid G; and coarse grids
G.; ({ = 1, 2) that cover the domain {2 such that G,; C G;. We
generate grids G; by eliminating every other mesh line of G;
in one or both coordinate directions. First we describe the fine-
grid discrete problem. Let the grid Gy contain my X #, cells and
have uniform spacings Ax, and Ay,. Let the discrete function
(wy);; reside at the G; mesh point (iAx,, jAy;). At each point
(i, j), we consider a corresponding cell (C;);; with corners at
((i—%j—-8GE+5j—-9C+35;+ ad (-3
J + %). Suppose we approximate the spatial derivatives of
(3.1) with first-order upwind differencing. Then, we obtain

d
Atfa (Wpd; = —Ne[wpiy — (Wil (3.2)

= Ny[Owedts — kel
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where the Courant numbers are
Ne= Aoy, Np= Aoy

and
A = adyy,

/\n = bAXf, ay = A.[f/AQf

The superscript n denotes the time level nAr. If we estimate
the time step A by

Ay = NAL, 3.3)
U aly; + bAx; (3.
it follows that
FTa+ A T a+ A (3-4)

where N is the Courant-Friedrichs—Lewy (CFL) number for
an explicit time-stepping scheme, and A, is the cell aspect
ratio Ax/Ay;. Taking a Fourier transform of (3.2), we obtain

A

d
Atfg“r’f = —[Nf(8) + Nof(6,))(R,) (3.5)

where
f(8)y=(1 —cos §) + isin 8,

and i = V1, The transformed discrete function is

mf—l nf—l
()84, = AxAyy 20 Eow)r,d. exp[—i(i,0; + jif)], (3.6)
. == !

where the phase angles 6; and 6, are given by

& k,
0, = 2 —, 6,,=27r‘2,
my hy

with wave numbers
ky=—@Gme— 1), .amp, ko= —Gn,— 1). ..., 305
Equation (3.5) can be rewritten as
Oy = (Wy)"™! — () = —Z(0;, 6,)0%)", 3.7

with Z being the Fourier symbol for the difference operator.
Consider the explicit p-stage scheme

RADESPIEL AND SWANSON

(Wf)wj = (Wf)"

) = W) — o (RN, 1=1,2,.,p, (3.8)
(W)t = (wp®,
where R, is a residual function defined as
Rf = AQfgffo. (39)

Using this scheme and (3.7), one can always represent the
change in i, by

v, = *I:"(Bg, 0.)Z2(0;, 8,)(7,)", (3.10)

and the symbol of the time-stepping operator F is given by

F(8:,0) = a, — aa,Z + cya, 100, 27— -+
£ Vg rd pp-1 ptEp—1tep-2 (3.11)
= (= Do, 005 - )27

In (3.11) we have assumed that both the convective and
numerical dissipative parts of the symbol Z are evaluated on
each stage of the time-stepping scheme. Since one can write
the numerical flux function as the sum of the convective and
numerical dissipative contributions, one can consider a more
general class of (p, g) schemes. The p refers to the number
of stages, and g designates the number of evaluations of the
dissipative contribution. Suppose we have a (p, 2) scheme. Let

Zy = Re(Z),

Z, = i - Im(Z).

Then, if p = 3, the F of (3.11) is replaced by

A

F=a, ~ o,(oZy + 0, 1 Z)ZY + oo, (00Zp + 0, 7)) 7]
— = (—l)P"(apap,l - aonde + e ZpZE (3.12)
+ (=1 e, - ) ZZE

In this paper, we consider a (5, 3) scheme where the evalua-
tions of the numerical dissipation are weighted. With such
weighting, one can extend the parabolic stability limit of the
scheme and/or improve the high-frequency damping behavior
of the scheme. The extension of the parabolic stability limit
can be important for upwind and total variation diminishing
(TVD} schemes, since it provides a larger margin for the intro-
duction of numerical dissipation. The increase in the stability
interval can also be beneficial for low Reynolds number viscous
flows. Another advantage of the weighted evaluation of the
numerical dissipation is that the operation count of the
multistage scheme can be reduced. For the (5, 3) scheme, the
symbol of the residual function corresponding to the (k + 1)th
stage is written as
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LI &
Rkl = O'_II:Z.'W(H + ZR% -yﬂﬁ;(‘)], 2 =1 (3.13)
= =0

The weighting factors are

Yo = I, Yu=0, vu=%,
Vi = I, Yu=0, vo="%, v =0,
Yao = Ials, Ya=0, yo=mls v2=0, yu=7,

3.14)

where I = (1 — 930, I's = (1 — ¥5), 7, = 0.56, and ys = 0.44.
The symbol of the time-stepping operator is given by

f'ﬁ = as[l - a4ZI(1 - a3Z;)

_ _ (3.15)
~ oy aZ{0a 2 — Vilg) — UsysZa 2],
where
Zi =7+ ?SZR»
Ly = 2y + ViZg,

Zy = ol — e Zy).

In applying multigrid to hyperbolic systems (i.e., Euler equa-
tions), or to hyperbolic—parabolic systems (i.e., Navier—Stokes
equations), both signal propagation speed and damping are
important, as discussed in [19]. Moreover, for the long wave-
length components, the advection process is most important
and multigrid achieves its efficiency by allowing the use of
larger time steps on coarse grids. Hence, it is important that
the smoother of the multigrid method use large time steps. For
the shorter wavelength components, damping is more im-
portant, and the efficiency of multigrid is based on principles
similar to those for elliptic equations.

One can extend the stability range of the explicit scheme of
(3.8} with implicit residual smoothing. For two dimensions, the
residual smoothing can be applied in the form

(1 = BV AN — BV, AIRD =R, (3.16)
where the residual (%t,)? is defined using (3.9) as
(RO = ay(R)", (3.17)

A and V are the usual forward and backward difference opera-
tors, and / = 1, ..., p, with p being the number of stages in the
scheme. The variable coefficients 8, and 8, are defined as

147

_ 1[{N 1 :

bom | () o)
B (N 1 :

= mn{i| (o) - 1o}

with N/N#* the ratio of the Courant number for the smoothed
scheme to that of the unsmoothed scheme, and r; = A /A A
reasonable value for the parameter i is 0.125. In practice,
this implicit procedure allows the explicit stability limit to be
increased by a factor of 2 to 3. For additional details concerning
implicit residual smoothing, see [3, 5].

If residual smoothing 15 applied on each stage of the time-
stepping scheme, then the symbol Z(8;, 8,) appearing in (3.10)
and (3.11) is replaced with

(3.18)

2(0. 8,) = 5(8;. 0,)Z(8,. 8,), 58, 0,) =T¢T5', (3.19)
where

F,=1+28,(1—-cos®), I',=1+28,(1—cosé,).

Before considering the discrete problem on some coarse grid
G.,1. we define the restriction operators and their corresponding
Fourier symbols. Assume that G., contains (m;/2)} X (n/2)
cells (full coarsening). Let Tjand QF denote the operators
that transfer the fine-grid solution and residual to the coarse
grid. Since any coarse-grid point belongs also to the fine
grid, we have simple injection for the solution transfer
operator. Thus,

T;r"llﬂf = Wf’ i‘;‘] = l (3'20)

To ensure the conservation property for the residual transfer
we define

»

Qf" (Re)iy= 4#%#_% (Rf)r.j s (3.21)

where u, and g, are the standard averaging operators for the
x and y directions. The symbol of this operator is given by

Q;-‘ =(1 + cos &)1 + cos 8,). (3.22)

If we now apply the p-stage scheme, we obtain at the corre-
sponding point of the G, problem

(w,)@ = (Wf)+ = (Wf)"H
(W(,l)m = (wc,l)o - alo-:'.l[(Rc.})u-l) + Pc.]]w

(Wc.l)("ﬂ) = (Wc4|)(p),

I=1,2....p,
(3.23)
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FIG. 2. Stability plots for 3-stage Runge—Kutta scheme with first-order upwind approximation (coefficients: 0.105, 0.325, 1.0): (a) stability curves with
implicit residual smoothing (CFL = 5.0, 8 = 0.75); (b) amplification factor with implicit residual smoothing (CFL = 5.0, 8 = 0.75).

where the forcing function or
P = 05(R)Y — (RO (3.24) S,y = —F.\8. 0,08 07 2w} (3.26)
and with
()t = ()" + Oy (3.27)
(Rf)+ = Aﬂfg{ff(Wf)+, .
Since
(Rc,l)m = A{)‘c.1Sgc.l(w’)c,l)m)-
&, = — FZ(Ww,)", (3.28)

Using (3.23) and (3.24), one can easily show that
where Z is the symbol of the modified difference operator

S,y = —Fo 800,08 RY (3.25) defined by (3.19), then
a b 1,0
4.0 \
0.8
2.0 1| X ) \
- ' ~ 0.6
0.0 4 o \
\\\ ’ 04
2.0 ™ N ‘,_/'\ \
i S A
0.2
-4.0
0.0 v e
80 -60 -40 20 00 20 00 05 10 15 2.0 25 30 3.5
x ]

FIG. 3. Stability plots for 5-stage Runge—Kutta scheme with first-order upwind approximation and three evaluations of dissipation (coefficient: 0.2742,
0.2067, 0.5020, 0.5142, 1.0): (a) stability curves with implicit residual smoothing (CFL = 5.0, 8 = 1.0); (b) amplification factor with implicit residwal smoothing
(CFL = 5.0, 8= 1.0).
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FIG. 4. Contour plots of amplification factor for 5-stage Runge—Kutta scheme with first-order upwind approximation and three evaluations of dissipation
(coefficients: 0.2742, 0.2067, 0.5020, 0.5142, 1.0): (a) one level, A = 1 (CFL = 5.0, CFL* = 2.4); (b) two levels, full coarsening, A = 1 {(CFL = 5.0,
CFL* = 2.4, (c) two levels, semicoarsening with simple averaging, weights = 0.5, A = 1 (CFL = 5.0, CFL* = 2.4); (d) two levels, sequential semicoarsening,

weights = 1.0, A = 1 {CFL = 50, CFLY = 1.4),

(We)" = g(Wy)", (3.29)
where the fine-grid amplification factor is
g=1-FZ, (3.30)

Moreover, in this case, where we are considering full coarsen-
ing, the fine-grid approximation is

(wf)”“ = ()" + 5171/f + oW,
and, thus,

@) =11 = F.\8., 0000 a7 ' Zlg (),

= g8 (W), (3.31)

with g. denoting the coarse-grid amplification factor.

We now apply the multilevel uniform analysis to two semi-
coarsening multigrid strategies (see Fig. 1). Let G,; and G,
be two coarse grids containing (m;/2) X n, and m; X (n/2)
cells, respectively. In the case of semicoarsening with simple
averaging, we express the Fourier transform of the update for
the fine-grid solution as

W) = ()" + Sy + e, + b, (3.32)

where @, = w, = 4. Then the amplification factor associated
with the coarse grids is given by

gc = 1 - %[Fc.lsvc.lo-r‘l@f'lgflzf + FC,ZS(,ZO-CJQ}!ZG-}TIZf]'
(3.33)

With sequential semicoarsening, we can use weightings of 1.0
for the coarse-grid corrections by improving the estimate of
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FIG. 5. Contour plots of amplification factor for 5-stage Runge—Kutta scheme with first-order upwind approximation and three evaluations of dissipation
{coefficients: 0.2742, 0.2067, 0.5020, 0.5142, 1.0): (a) one level, A = 10 (CFL = 5.0, CFL* = 2.4); (b) two levels, ful! coarsening, A = 10 (CFL = 5.0,
CFL* = 2.4); (c) two levels, semicoarsening with simple averaging, weights = 0.5, A = 10 (CFL = 5.0, CFL* = 2.4); {d} Two levels, sequential semicoarsening,

weights = 1.0, A = 10 (CFL = 5.0, CFL* = 2.4).

the initial solution on either grid G,;. as indicated in Fig, 1,
or G, ;. The coarse-grid correction i, is given by (3.26), and
the other one &, is given by

6ﬁ)c.2 == Fc,2 [SC.2 T Q}"Z

A (3.34)
— ZooF 18010105 Va7 Zeg (B Y.
By substituting (3.26), (3.28), and (3.34) into (3.32), one can
compute the amplification factor g(6;, 6,).

Before we applied the two-dimensional multigrid analysis
just discussed, we examined the stability properties for a large
number of multistage time-stepping schemes, including the
schemes published in [20, 21]. We performed this preliminary
study with the one-dimensional advection equation for a single
grid. Figures 2 and 3 show two examples from this study. The
dashed line represents the locus of the symbol of the difference

operator, and it must lie inside the absolute stability curve. The
dissipative term for first-order upwind differencing is evaluated
three times for both the three- and five-stage schemes. In the
case of the (5,3) scheme, the dissipation is computed on the
first, third, and fifth stages, and the weights are those given in
(3.14). While the (3.3) scheme exhibits fairly good high-
frequency damping, there is a substantial improvement in damp-
ing with the (5,3) scheme, at the expens: of a little extra work.
The coefficients for the (5,3) scheme were determined by
C.-H. Tai using the analysis of [22].

In Figs. 4 and 5, we present contours of the modulus of the
amplification factor for the following cases: (1) single grid; (2)
full coarsening; (3) semicoarsening with simple averaging; (4)
sequential semicoarsening. In the figures and in subsequent
discussion we let g denote | g(6;, 8,) . For each case, cell aspect
ratios of one and ten are shown. The improvement in damping
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FIG, 6. Control volume for nodal-point scheme.

with the two-level schemes is evident. There is greater compres-
sion of g to the origin with the semicoarsening strategies. The
aspect ratio (A} of 10 contours indicate that the one-dimensional
behavior of the driving scheme in the 7 direction is recovered
for large A. They also show that modes associated with the £
direction ar¢ damped much better with the sequential semi-
coarsening scheme. Moreover, let |#] = max(| 6/, |6,|) and
define the smoothing factor w of a scheme as the maximum g
for 0.5 = |8| = m. The p for the full coarsening scheme is
0.42, while the g for the sequential semicoarsening scheme is
about 0.21.

According to the current analysis, where the nodal point of
interest 1s assumed to be common to all meshes being consid-
ered, the semicoarsening scheme with selective averaging has
the same damping behavior as the one with simple averaging,
In practice, bowever, we observe the expected improvement in
damping when using selective rather than simple averaging.
This will be demonstrated later.

4. GOYERNING FLOW EQUATIONS

Let p, w, v, p, T, E, and H denote, respectively, the nondimen-
sional values of density, velocity components in the x and y
Cartesian directions, pressure, temperature, specific total inter-
nal energy, and specific total enthalpy. In addition, let e, and
¢, be unit vectors of the Cartesian coordinate systera (x. ¥) and
let n be a unit vector normal to the surface & enclosing a
volume %', Then the two-dimensional, unsteady Navier—Stokes
equations, neglecting body forces and heat sources, can be
written in conservative form in a Cartesian coordinate system as

air”de‘V + Ly(%ﬁ F,)-nd¥ =0, 4.1)

where the solution vector W and the tensors %, &, are de-
fined as

fol pue, + pue,

pit (pu® + ple. + puve,
W= . Fo= .

pU puve, + ('t + pe,

pE puHe, + puHe,

111

_ 0 T
08, T T€,

T € + oe, :

(o, + U7y — G.)e,
L + {ury,t vo, — g,)e,

with

H=£g+Z
p

The scaling factor Re ' = VyMRe™!, with M and Re represent-
ing the Mach and Reynolds numbers, respectively, In this paper,
the working fluid is air, and it {s assumed to be thermally and
calorically perfect. That is, the equation of state is

FIG. 7. Maltilevel schemes: (a) full coarsening; (b} semicoarsening with
simple averaging; (c) sequential semicoarsening; (d) semicoarsening with selec-
tive averaging.
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FIG. 8. Semicoarsening with selection of coarse meshes.

p=y— DplE— (@ +v)2), T=plp. (42)
The quantities w and A are the first and second coefficients
of viscosity, respectively, and A is taken to he —§p (Stokes
hypothesis). Sutherland’s law is used to determine the molecu-
lar viscosity coefficient . The coefficient of thermal conductiv-
ity (k) is evaluated using the constant Prandtl number assump-
tion. The effect of turbulence is taken into account by using the
eddy viscosity hypothesis. In the present work, the turbulence
model of Baldwin and Lomax [23] is used.

5. SPATIAL DISCRETIZATION

The numerical approximation of (4.1) follows the method
of lines, which decouples the discretization in space and time.
The physical domain around the aerodynamic body is divided
into guadrilateral cells by the generation of a body-fitted grid.
The discrete values of the flow quantities are located at the
vertices of the mesh cells. For the flux calculation, an auxiliary

0.050

0.000

0.000 0.050
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grid is used, which is defined by connecting the cell centers of
the original cells (see Fig. 6). The integral equation (4.1) is
approximated by the spatial discretization, yielding

d

7 (5.1

1
w.‘,j == V’ ((Qc)i.j + (Qu)i.j)s

where V;; denotes the area of the control volume surrounding
the grid node (i, /); (Q. };;and (Q,); ;represent approximations of
the convective flux and viscous flux, respectively. The viscons
fluxes are approximated by central differences using a local
transformation from Cartesian coordinates to the curvilinear
coordinates [4]. In the following some details of the upwind
discretization of the convective terms are discussed. The invis-
cid flux through the interface, (i + %, j) is evaluated as

(Qc)iﬂfZ,j = %[(@c)f,j + (@c)iﬂj] . S£+1.'2.j + %Rr'+l.'2<j(pi+l!2.j- (5.2)

Here, 8., is the surface vector of face (i + 4, j), and R is
the right eigenvector matrix of the flux Jacobian in transformed
space. Equation (5.2) separates the inviscid numerical flux into
the sum of an averaged term cortesponding to central differenc-
ing and a dissipative term, which adapts the discretization sten-
cilin accordance with local wave propagation: The flux function
@ is based on the second-order accurate upwind TVD scheme
of Yee and Harten [24]. Here, we do not repeat the formulation
for @, but simply indicate some important details in the present
numerical evaluation of ®. Second-order accuracy is obtained
with the limiter

gy = as—m.}(agﬂn,j +e)+ a£+lf2.j(a£2flf2,j + &) (5.3)
Y oyt Qleip; T+ 28 | .

where « is the first difference of the characteristic variable,
R7'AW, and ¢ is a small constant to prevent division by zero.
The flow quantities at the face (i + 3, j) are evaluated by Roe’s
averaging procedure [25]. The limiter function of (5.3) was
selected because numerical experimentation with alternative
limiter functions given by Yee [26] showed less reliable conver-
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0.100 0.150

FIG. 9. Coordinate mesh for ramp-flow problem with 128 X 80 cells.
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FIG. 10. Flow solution for ramp-flow problem: {a) Mach contours; (b) pressure coefficient; (c} skin friction.

gence behavior in general. Note that the scheme is identical to
Roe’s first-order flux difference splitting for g = (. Since Roe’s
scheme may violate the entropy condition when the eigenvalues
of the flux Jacobians vanish, the eigenvalues are modified using
an entropy function . This entropy correction has to be care-
fully designed for viscous flow calculations. The shear layers
along solid walls are numerically smeared if an entropy correc-
tion is applied to the eigenvalues associated with the convective
waves. On the other hand, if cells with high aspect ratios are
present, additional support for damping in the direction of the
long side of a cell is needed in regions of low velocities, such
as stagnation points. Therefore, the correction of the eigenval-
ues ¥ is constructed as a function of the cell aspect ratio, For
the convective waves, the function

AL, if | A}] = 8,
(AL = B|/\£ci2 + & +(1 - B)IAY, otherwise, G4
28
and for the acoustic waves,
|4, if | At = o,
W(AL) = M;;_‘S?’ otherwise. &)

In Egs. (5.4) and (5.5), A} represents the /th eigenvalue of the

transformed flux Jacobian in the £-direction. The entropy pa-
rameter, &, is given according to Miiller [27],

8= BA:(1 + (A JA)"), (5.6)

where A;, A, are the spectral radii of the flux Jacobians in the
¢ and 7 directions, ¢ < w < 1,and 0.1 < § < 05. If U =
ue, + ve,, S; and S, are directed areas associated with the £
and 7 directions, and ¢ is the speed of sound, then
Ae= U8 +¢c|S] A, =|U-S,|+¢l8,] &7

The blending coefficient, 3, accounts for the cell aspect ratio,
It is given as

B =max(l — A/A,, k). (5.8)

It is shown below that « should be zero for accurate computa-
tions of shear layers. Furthermore, we will demonstrate that a
wide range of flow problems can be solved accurately with a

single set of parameters, & = 0.25, w = 0.3, and « = 0.

6. ITERATIVE SCHEME FOR HYPERSONIC FLOWS

The basic elements of the time-stepping scheme have been
outlined in Section 3, and they are not repeated here. In the
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FIG. 11. Influence of multigrid strategies on convergence for ramp-flow

problem.

following sections emphasis is placed on recent improvements
to enhance robustness for hypersonic flow calculations.

6.1. Multistage Scheme for the Fine and Coarse Meshes

Consistent with the results for the advection equation in
Section 3, we have observed the need to pair spatial discretiza-
tion and particular time-stepping schemes for the solution of
the Navier-Stokes equation. The most robust choice of spatial
discretizations found to this point is to use the second-order
upwind scheme of Section 5 on the fine meshes and to set the
limiter to zero everywhere on the coarse meshes. An alternative
choice taken in [6, 8] is to use scalar second-difference dissipa-
tion terms on the coarse meshes. This tumed out to be less
robust because the second differences are less diffusive with
respect to the acoustic modes; also, the central-difference
scheme allows waves to travel upstream in supersonic flow.
As indicated previously, a five-stage scheme with three evalua-

-2
o
= . RDP = 1Tps
& -3 \ r = 0.976
= e RDP = 118us
© 4| . r = 0.950
W ROP = BGps
i r=0.922
-5}
RDP = [18ps
r=0.877
-6 RDF = 1881
r = 0.808
— 7 1 1 ) 1 l )
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multigrid cycles

FIG. 12
flow problem.

Influence of selected coarse meshes on convergence for ramp-
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FIG.13. Influence of multipie time stepping on coarse meshes for multigrid
with full coarsening.

tions of dissipation and the coefficients of Tai [22] is used for
time advancement. The large viscous stability limit of this
scheme is shown in Fig. 3. Disturbances are most effectively
expelled out of the computational domain by using local time
stepping and implicit residual smoothing [5, 6]. The smoothing
of the residuals allows a Courant number ratio (CFL/CFL*) as
high as 2.5 when CFL* = 2.3, which is roughly the stability
limit of the explicit scheme. The time step is determined by
the spectral radii of the inviscid flux Jacobians in the different
coordinate directions, A; and A,, as

V —
Ao+ A,

Ar= CFL (6.1)

In order to stabilize the schemes in regions where the viscous
stability limit is more restrictive than the inviscid limit, the
coefficients of the implicit residual smoothing operator are

Logi|8p/Bt|2

RDP = 1184s
r =0877

N RDP = 140,
S

-7 1 1 1 1 X |
0 40 &0 120
multigrid cycles

FI1G. 14, Influence of multiple time stepping on coarse meshcs for muliigrid
with sequential semicoarsening.
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FIG. 15. Convergence of ramp flow with single-mesh time stepping and
multigrid with sequential semicoarsening.

locally increased, as outlined in [6, 8]. At strong shocks, how-
ever, high Courant numbers are not appropriate. Consequently,
an adaptive time step is employed. By using the nondimensional
second difference of the pressure as a switch, the value of CFL
is locally reduced to about two at the shock.

6.2. Multigrid Schemes

For the numerical solution of the Navier—Stokes equations,
the two-level strategies presented in Fig. 1 are extended to
mittilevel schemes, as displayed in Fig. 7. The only differences
between the two-level schemes and the multilevel schemes
occur in the restriction process. Whenever two “‘down’’ arrows
meet at a coarse mesh, averaging is used to obtain the restricted
variable. The multilevel arrangement of the coarse meshes,
shown in Fig. 7b, was first given by Mulder [17], who used
semicoarsening in order to solve the flow alignment problem.
Suitable coordinate meshes for thin boundary layers exhibit
mostly cells with high aspect ratios in the surface-aligned direc-
tion. Figure 8 displays further variants of semicoarsening for
these situations which are computationally cheaper than the
semicoarsening schemes shown in Fig. 7.

One may notice that the central restriction and prolongation
operators discussed in Section 2 allow for upstream propagation
of disturbances in supersonic flow. Furthermore, the corrections
given by the standard multigrid scheme near strong shocks lead
to divergence of the calculation, particularly during the initial
part of the transient phase. Therefore, the restriction operator
is damped by using

R,“j = Il'lax(l - S(R) O)R;J, (6.2)

[N

where E,_ ;18 the standard restriction operator and & {’j) is a switch
to detect strong shocks:

853) = k" max(v;, ¥y, Vi, Vi, Yirrs Yo,

(6.3)

[1s

_ P T ZPU + Piry
Pi-1j + 2Pi:j + Pir1;

Vi

b= Pij-1 — 2P0+ P
’ P T 2Pr,j T P )
(6.4)

The damping coefficient, &%, is given a value of about one in
the startup phase of the multigrid process and is decreased to
a value of about 0.4 at later cycle numbers in order to allow
for improved asymptotic convergence rates. This is in line with
the restriction damping of Koren and Hemker [14], who based
their damping coefficients on a more physical analysis. Numeri-
cal results obtained for different choices of & are given in the
next section.

A fixed V-type cycle with time stepping on the way down
is used to execute the multigrid strategies described above.
The robustness of the overail scheme is much improved by
smoothing the resultant coarse-mesh corrections before they
are passed to the finest mesh. The smoothing reduces high-
frequency oscillations introduced by the linear interpolation
of the coarse-mesh corrections. The factored scheme equation
(3.16) with constant coefficients around 0.1 is used for this
smoothing. Also, the application of full multigrid (FMG) pro-
vides a well-conditioned starting solution for the finest mesh
being considered.

One could choose another type of multigrid cycle. In fact,
based on our experience with solving fluid dynamics problems,
FMG with V-type cycles converges slower than FMG with
W-type cycles. However, usually the computational time to
achieve a certain level of convergence is roughly the same. In
addition, we have found that with the class of multigrid schemes
being considered, a V-type cycle with two sweeps of each
coarse mesh yields about the same convergence history as a
W-type cycle.

7. NUMERICAL RESULTS

Four different flow problems are considered to assess the
capabilities of the multigrid schemes. There are three hyper-

—— ésccond order
4 -

— second order
% first order

logjiGp/étl]s
o

® firat order
—4

1 L L] ! L 1

0 40 80 120 180 200
multigrid cycles

FIG. 16. Convergence histories for flow-alignment problem,
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FIG. 17. Coordinate mesh for forebody with 256 X 96 cells.

sonic flow cases. These are laminar Mach 10 (31 = 10) flow over
a compression ramp, turbulent fiow over a slender forebody at
high Reynolds number, and laminar flow over an airfoil at high
Mach number and high angle of attack. The fourth case, which
involves transonic flow over an airfoil, is used to indicate the
behavior of the multigrid method with sequential semicoarsen-
ing for lower Mach numbers. This particular case was selected
because it has a large numerical data base, Table 1 gives a
summary of the geometries and the flow parameters of the test
cases. In this table, T, is the dimensional free-stream tempera-
ture, and T, is the specified wall temperature. Also, the finest
grid used for each flow computation is characterized by the
streamwise and normal leading-edge spacings (As,, An,),

0.25

Y/C

0.00

along with the normal spacing (An,, ) at the end or trailing edge
of a geometry.

The flow over the compression ramp is identical to Case 3.2
of the Workshop on Hypersonic Flows for Reentry Problems,
Part 11, Antibes, France, 199]1. This allows comparisons with
the performance of other computational methods published in
[28). Figure 9 displays the coordinate mesh generated for this
test case. The low Reynolds number allows for a mesh with
moderate aspect ratios between 5 and 50 near the wall. The
129 X 81 mesh is successively coarsened down to 9 X 6, which
yields nine grid levels with semicoarsening and five levels with
full coarsening. It is expected that the semicoarsening strategy
should eliminate most of the stiffness associated with aspect

0.50

FIG. 18. Mach contours for turbulent forebody.
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Table 1

Flow Parameters and Geometric Parameters for the Test Cases

Flow Case M «a Re, Tt Tu/Tine | No.Pts. Asp/c Anpfe Angfc
M
-'——t C —— 10 20° 18119 52K 5.57 1206x81  0.004 0.0008 {.0008
= )
r=0.0004c
7 5  2.E8 100K adiab. | 257x97 4.4B-5 2.E-7 2.E-6
NACA
0012
25 30° 2.E5 100K 50 257Tx81 1.3E-3 1E-5 1E+4
Mi -5? fo—0w C
RAE
2822
073 2.79* 6.5F6 273K adiab. 321x65 1.6E-3 LE-5 L.E-5
Mi -E,j; |t —

ratio. The converged flow solution is shown in Fig. 10. The
computed extent of separation in the corner is somewhat smaller
for the coarse mesh than for the fine mesh. Note that the result
of the fine mesh agrees very well with grid-converged computa-
tions published in [13].

In the next figures, we investigate the performance of the
different multigrid schemes. For this purpose, computations are
started from a solution which was converged to about plotting
accuracy. Figure 11 compares the different schemes of Fig. 7.
The numbers indicate the final convergence rate (r) of the
schemes and the rate of data processing (RDP) on a Cray-YMP
to advance one grid point by one multigrid cycle, It is seen
that the sequential semicoarsening scheme (Fig. 7c) gives by
far the best convergence rate. For this scheme, the effect of
the modifications shown in Fig. 8 is investigated in Fig. 12.
One finds that the meshes obtained by full coarsening and by
semicoarsening in the direction normal to the wall are both
important to achieve good convergence rates. From Figs. 11—
12, we conclude that semicoarsening with a selected number
of coarse meshes is most effective for this flow problem; how-
ever, full coarsening does a surprisingly good job because of
its low work count. The convergence rates indicated in Figs.
11-12 were obtained with the damping coefficient k™ set at
0.3. By increasing £™ to 1.0, which is a typical value for the
initial phase of the calculations, one observes slightly worse

rates. For example, the rate (r) of 0.877 for sequential semi-
coarsening with coarse-mesh selection, which is given in Fig.
12, decreases to r = 0.893. On the other hand, decreasing the
value of k™ yields divergence of the computation, Figures 13—
14 show improvements which may be gained by using more
than a single time step on the coarse meshes. The full coarsening
scheme, Fig. 13, gives only marginal gains when using more
than two time steps on the coarse meshes. The sequential semi-
coarsening scheme, Fig. 14, gives an initially improved rate,
whereas the final rate is not affected by more work done on
the coarse meshes. It is thought that the capabilities of the
multigrid approach are put to full use for this test case. Further
improvements are foreseen only if the remaining stiffness in
the discrete equations, that is the differences in the characteristic
speeds of acoustic and convective waves, can be overcome by
some proper means. A comparison between single mesh and
multigrid computations is given in Fig, 15. We find that the
multigrid scheme with sequential semicoarsening converges
within one-tenth of the computing time required for the single
mesh scheme.

The grid generated for the ramp flow is well suited to study
the grid-alignment problem which occurs for inviscid flow over
the ramp. Figure 16 shows convergence histories of various
schemes obtained by using a slip-wall boundary condition and
omitting the viscous terms in the governing equations. Gener-
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FIG. 19. Distribution of skin friction along forebody.

ally, convergence is worse for the inviscid flow because the
convective eigenvalues of the flux Jacobian in the normal direc-
tion are zero for most of the grid points. The second-order
solution does not converge, regardless of which multigrid strat-
egy we use. With the flux limiter, Eq. (5.3), set to zero every-
where on the fine mesh, the sclution converges, provided we
use all the coarse meshes introduced by the semicoarsening
approach. For this problem perfect ftow alignment does not
occur, In particular, the differential operator for the direction
normal to the flow vanishes, but the corresponding discrete
operator does not. This nonalignment is caused by the discreti-
zation and iteration errors. One might conclude that the stalled
convergence with the second-order upwind scheme is primarily
a consequence of nonalignment. However, since the rate of
convergence with the first-order approximations of the spatial
derivatives is somewhat slow, which is not consistent with the
results of Mulder [29] with semicoarsening, it is reasonable to
conclude that nonalignment is not the only source of difficulty.
Another fact to consider is that the explicit iteration scheme is
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T
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FIG. 21.
of the cut-off value, «, applied to the convective waves.
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FIG. 20. Distribution of adiabatic wall temperature along forebody.

somewhat less effective in damping shear waves than acoustic
waves. This is because the size of the time step is dominated
by the acoustic wave speed. Preconditioning techniques such
as those of {30, 31], which attempt to equilibrate wave speeds,
could possibly improve this situation considerably.

The flow over a slender forebody is chosen to represent
a generic configuration corresponding to a high-speed civil
transport aircraft or an air-breathing space transportation system
with low wave drag. The high Reynolds numbers yield thin
boundary layers, which can only be resolved with highly clus-
tered coordinate meshes and large aspect ratio cells. The mesh
used for the present investigations is displayed in Fig, 17. The
cells near the wall have aspect ratios up to 25,000. The flow
computations were done with fixed transition at 2% chord and
with the assumption of an adiabatic wall. Figures 18-20 show
the solution obtained on three successively refined meshes.
Both the distributions of skin friction and wall temperature
are accurately computed, even with just 25 points in the
normal direction. The effect of numerical dissipation intro-

b
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3 oaa ¢ 65x25 mwesh, k= 0.0
'-B-L L —---- 65x25 mesh, x = 0.1
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Influence of the entropy correction coefficients on the adiabatic wall temperature along forebody: (a) Influence of the exponent w; (b) Influence
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FIG. 22. Influence of multigrid strategy on convergence for forebody,
mesh 256 X 96.

duced by the entropy correction function ¥, Eqs. (5.4)-
(5.8), is shown in Fig. 21. If the value of w is increased
to %, which is a typical value used in central-difference codes
[2, 4], the wall temperature is badly reproduced on the coarse
mesh. Furthermore, if we introduce numerical dissipation for
the convective waves in the direction of the short side of
the cells by setting x > 0, the shear layers are numerically
smeared; hence, the wall temperature is adversely affected. We
note that a value of k¥ = 0.1, which again is a representative
dissipation level of current central-difference codes, yields
reasonable solutions. However, the convergence behavior is
not changed much with this relatively low levei of numerical
dissipation. Hence, all the results presented for the three
hypersonic test cases were obtained with a single set of
parameters, 5= 025, w = 03, and « = 0.

Next we investigate the convergence behavior of the
multigrid schemes. The fine mesh with 257 X 97 points allows
11 grid levels to be used with semicoarsening. First we note

single mesh
_l_RDP = 32ua

loglldp/8t||2

. 1 RDP = b6pa

} RDP = ti8us

i 1 1 | 1]

0 2000 4000
multigrid cycles

FIG. 23. Convergence histories for single-mesh time stepping and
multigrid with sequential semicoarsening.
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FIG. 24. Coordinate mesh for NACA 0012 with 256 X 80 cells.

that it is not possible to run the full diamond-shape tree of
coarse meshes. Obviously, the time-stepping scheme is not well
suited to handle the extreme aspect ratios which occur on the
17 X 97 mesh, for example. Using the proper half of the
diamond, which includes the meshes with relatively low aspect
ratios, the numerical sofution converges. Figure 22 displays a
comparison of the different multigrid strategies. The computa-
tions are started from a preconverged solution. The computer
time to update a grid point by one multigrid cycle, RDP, and
the final convergence rate, r, are also included. Again, the
scheme with sequential semicoarsening converges best. The
differences between the multigrid schemes for this case, having
cells with very high aspect ratios, are larger than for the ramp
flow. The final convergence rate of the scheme with sequential
semicoarsening is 15 times better than the rate with full coarsen-
ing. A comparison of the performance for the complete FMG
process is given in Fig. 23. The sequential semicoarsening
scheme takes 194 cycles and 570 CPU seconds on a Cray-
YMP to reduce the averaged residuals to 1072 on the fine mesh.
The scheme with full coarsening takes 1024 cycles and 1430 s,
and the single mesh code takes 7762 time steps and 6190 s to
achieve the same convergence level. Note that residuals of 1072
correspond to a solution which is converged to engineering
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FIG. 25. Mach contours for NACA 0012,

accuracy. If we compared computer times te reach lower levels
of residuals, instead, the results would have been even better
for the multigrid scheme with semicoarsening.

Laminar flow over an airfoil at M = 25 and & = 30° is
chosen as a test case in order to demonstrate that the multigrid
method used here can handle very strong shock waves and
highly expanded flow. Figure 24 shows the 257 X 81 mesh.
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FIG. 27. Distribution of skin friction along airfoil.

The numerical flow solution, which is represented in Figs.
25-28, features a large separated flow region with two distinct
vortices. The resulting shear layers are not well aligned with
the coordinate mesh; hence, considerable numerical smearing
is expected in those regions. The difficulties in resolving
this highly separated flow are ilustrated by a comparison
of the results obtained from meshes with different grid
densities. Obviously, the mesh with 129 X 4] points is still
too coarse to resolve the separated flow region. The conver-
gence history of the sequential semicoarsening scheme is
shown in Fig. 29. The residual drops eight orders of magnitude
within 400 multigrid cycles. Note that the largest values of
dpfat are located at the shock wave. The solution converges
to engineering accuracy within 100 multigrid cycles.

In Figs. 30 and 31 the results for the final case (transonic
flow over an RAE 2822 airfoil) are displayed. For this computa-
tion the inputs of the numerical scheme (i.e., CFL, 8, w, and
) are the same as the usual ones used for the hypersonic flow
cases. The results for this turbulent flow include distributions
of pressure and skin-friction coefficients, as well as the coeffi-
cients of lift {C}), pressure drag {C,,), and friction drag (Cy).
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FIG. 26. Streamlines in separated-flow region.
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FIG. 31. Convergence behavior for transonic flow over RAE 2822 airfoil

(M =073, & =279, Re = 6.5 X 109

The predicted distributions exhibit good agreement with the
experimental data of [32]. All of the results are comparable to
those obtained in [4] with central differencing and twice the
present mesh density. Thus, the improved accuracy of the up-
wind scheme compensates for its higher operation count. The
convergence history for this case is also presented in Fig. 31.
Again, significant differences in the convergence rates for
multigrid with sequential semicoarsening and full coarsening
are cbserved. The convergence rate for the sequential semi-
coarsening scheme (0.942 over 150 multigrid cycles) is compa-
rable to those rates reported in [4] for central differencing
combined with full coarsening and a W-type cycle.

8. CONCLUSIONS

Several multigrid schemes for hypersonic low computations
have been investigated, The basic solution algorithm employs
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FIG. 30. Solution for transonic flow over RAE 2822 airfoil (M = 0.73, @ = 2.79°, Re = 6.5 X 10°): (a) pressure coefficient; (b} skin friction.
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upwind discretization and explicit multistage time stepping.
Various multigrid schemes with semicoarsening are introduced
in order to overcome stiffness resulting from the mesh cells
with high aspect ratio which are necessary to resolve viscous
flows. The basic components of the algorithm are examined
with Fourier stability analysis applied to the two-dimensional
advection equation. Both the results of the Fourier analysis and
the computations of high Reynolds number flows suggest that
the semicoarsening approach is effective. For the first time,
convergence rates for hypersonic viscous flows are shown
which are similar or even better than those previously published
for the transonic regime [3, 4]. Further work is required to make
the computational scheme less expensive. This is especially true
for the coarse meshes used within the semicoarsening approach,
which make up the major portion of the overall work count of
the scheme. Further improvements of convergence rates seem
possible if stiffness arising from the difference of characteristic
speeds of acoustic and convective waves can be overcome. For
this purpose, new techniques such as preconditioning of the
flow equations [30, 31] or characteristic residual smoothing
[12] seem to hold promise.
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